
21-April-2006 - 1

Using Linux in Embedded Systems
Where and When does it apply?

21-Apr-2006



21-April-2006 - 2

• A combination of computer hardware and software, perhaps with 
additional mechanical or other components, designed to perform a
dedicated function
– Unlike a general-purpose PC, embedded systems typically have 

specific requirements and perform pre-defined tasks
– The hardware and software typically is part of some larger system 

and expected to function without human intervention
– Embedded systems often need to respond to events in real time

• Embedded systems can range in size from a single processing board 
to systems with full operating systems
– Typical embedded system is a single-board microcomputer with 

software in ROM, which starts running a dedicated application as
soon as power is turned on & stops only when power is turned off

• Using Linux as the operating system for embedded systems has 
captured the imagination of device designers

What is an “Embedded System”



21-April-2006 - 3

Constraints in Embedded System 
Design
• Embedded systems are designed to do a given task at a low cost

– Most have specific real-time system constraints that must be met
– They may need to be very fast for some functions, but not others
– Often some parts of an embedded system need low performance 

compared to the primary mission of the system
– Real-time constraints can be met with a combination of dedicated 

hardware and software tailored to the system requirements.
• Embedded systems are typically expected to run continuously for 

years without maintenance
– More careful attention is paid during software development and 

test than is done for desktop PC applications
– Embedded systems avoid mechanical or moving parts as much 

as possible because these are unreliable
– Human intervention may be impossible so a system must be able 

to restart itself even if catastrophic data corruption occurs



21-April-2006 - 4

Evolution in the Embedded World
• In the past, "embedded" referred to relatively small systems with few 

characteristics of a "computer"
– Mostly hardware product with tiny amounts of memory and small 

but very efficient programs
– May not need to communicate with other programmed devices
– If there was an OS at all, it was lean and not very feature-rich

• Embedded projects today are more sophisticated, both in terms of
features and underlying hardware
– Most embedded systems require some type of connectivity, such 

as Ethernet or USB
– Cheaper / faster processors & memory are available
– Trying to write everything from scratch is not feasible so software 

reuse is more necessary than ever
– Many of these components now exist in the public domain and in 

the open source community



21-April-2006 - 5

Cost Considerations
• For high volume systems, cost usually dominates the system design

– Use a CPU that is “good enough” for these secondary functions
– Intentionally simplify system to keep costs as low as possible
– Each component (including software) is selected and targeted to 

minimize system cost
• For low-volume systems, personal computers can often be used

– A design choice might still be to limit the programs installed or 
replace the operating system with a real-time operating system

– Special purpose hardware that is a requirement in a high volume 
system may be replaced by one or more high performance CPUs

• Some embedded systems may require both high performance CPUs, 
special hardware, and large memories to accomplish a required task.



21-April-2006 - 6

Popular RTOS choices
• For embedded systems that use an operating system, we have more 

choices available today than ever before
– There are more than we can list here, but to name a few:

• Embedded Linux
• VxWorks
• QNX
• Windows CE
• Windows NT Embedded
• LynxOS
• NetBSD / OpenBSD
• Palm OS
• DOS
• Inferno
• eCos

• About 20% of embedded systems use Linux today & growing



21-April-2006 - 7

Why Embedded Linux?
• Linux first attracts designers because it is free to download, it comes 

with the source, and is compatible with a wide range of processors
• A Linux operating system gives immediate access to many useful 

features that would be difficult to provide with a lower order OS
– by choosing the right packages, it is possible to easily add such 

features as TCP/IP, SNMP, TFTP, HTTP, VoIP and others
– there is a rich set of drivers and other features which add to the 

value package



21-April-2006 - 8

Embedded Linux Advantages
• Choosing embedded Linux brings several advantages compared to 

other embedded operating systems:
– Open source kernel provides mature well tested code base with a 

reputation for reliability
– A modular architecture makes it possible to customize system to 

meet application requirements
– No up-front purchase costs
– No run-time royalty costs
– A standard programming interface

• Inexpensive development seats or zero cost development tools
– A worldwide support community
– Reasonably small footprint

• Windows CE takes 21MB compared to 2MB for Embedded Linux



21-April-2006 - 9

Embedded Linux Disadvantages
• Embedded Linux has a few disadvantages compared to other 

embedded operating system choices:
– Has to be customized / optimized for specific application to obtain 

minimum footprint and maximum benefit
• Designers must have certain knowledge or skills not widely available

– Open source
• No common platform to rally around – which distribution to choose?

– Concerns about general-public-license contamination
– Not generally a hard real-time solution



21-April-2006 - 10

Memory Requirements
• A Linux kernel, combined with a few other free software utilities, can 

fit into the limited hardware space available in an embedded device
– Linux micro-kernel requires only about 100 K on a Pentium CPU, 

including virtual memory and all core operating system functions
– Add in the networking stack and basic utilities, a complete Linux 

system could still fit in 500 K of memory
• Total memory required is dictated by the applications selected for the 

given application, such as a Web server or SNMP agent
– An embedded Linux system should be customized to user needs 

to minimize space requirements
– A fully featured Linux kernel requires about 1 MB of memory
– Typical installation of embedded Linux takes less than 2 MB



21-April-2006 - 11

Linux is not a Real Time OS
• Before 2.6, the standard Linux application was not suitable for hard 

real-time systems for several basic architectural reasons
– the basic Linux scheduler uses a fairness algorithm to guarantee

even the lowest priority process some CPU time, even though a 
higher priority process may be waiting

– when a process calls a kernel service, such as the scheduler or a 
device driver, this call disables interrupts and makes it impossible 
to pre-empt Linux until the service completes execution

– Linux also relies on page swapping to move user code into and 
out of virtual memory, making timing unpredictable

• Standard Linux could still be used in embedded systems design, but 
just not if if the application has real-time response constraints
– Something needed to be done ...



21-April-2006 - 12

Adapting Linux for Real Time
• To use the 2.4 kernel in real time applications, the Linux community 

used patches and workarounds to deliver deterministic performance
– One approach was to add pre-emption points within the kernel to 

reduce process latency but still protect critical code sections
– A modified scheduler also ensures that the processor executes 

the highest priority tasks
– Another approach was to add a small real-time kernel to handle 

the high-priority tasks while Linux runs as the lowest priority to 
schedule the remaining non-real-time tasks

• RTAI (Real Time Application Interface) and RTLinux are two open-
source projects based on this dual-kernel approach

• These patches are imperfect, but they offer a drastic improvement 
over the standard 2.4 Linux kernel
– Main drawback is that they are nonstandard and require unique 

support and reimplementation for each kernel update



21-April-2006 - 13

Linux as a Real Time OS
• Many real-time concepts applied to the 2.4 kernel are a permanent 

part of Linux in 2.6 and are standard build options
– Numerous pre-emption points allowing the scheduler to suspend 

an active task and initiate a higher priority process were added
– The kernel can be built without a page-swapping virtual-memory 

system that wreaks havoc on process timing
– The process-scheduler algorithm has been re-written to speed 

task switching in multitasking applications
– Improvements were made to the Linux Posix (Portable Operating 

System Interface for Unix) implementation
• 2.6 has updates to benefit embedded, desktop, and server systems

– uClinux was incorporated into the kernel, allowing it to run on low 
cost micro-controllers without memory management

• Yields a smaller footprint build for applications with no user interface



21-April-2006 - 14

• So – with all of that, why not move to 2.6 kernel for embedded? 
• The 2.6 kernel has the following disadvantages:

– Slower to build: takes 30 - 40% longer to compile than 2.4
– Slower to boot: takes 5-15% longer to boot to multi-user mode
– Slower to run: context switches up to 96% slower, file system 

latencies up to 76% slower, local communication latencies up to 
80% slower, local communication bandwidth less than 50% in 
some cases

– Bigger FLASH memory footprint: the compressed kernel image is 
30-40% bigger

– Bigger RAM memory footprint: the kernel needs 30-40% more 
RAM

• For our current embedded developments we have chosen to remain 
with the patched 2.4 kernel rather than move to 2.6
– Future projects might require 2.6 for other reasons (ex. IPv6)

2.4 Kernel vs 2.6 Kernel



21-April-2006 - 15

When to choose Linux?
• Embedded developers need to ask what they want from an OS

– First consider - does this application even need an OS?
• Do you just need a round robin processing loop?

– What processing hardware will be used?
• Will it be a larger device with networking etc?

– Do you need threading?
– Do you need device drivers for chip peripherals? 

• Linux is best suited to embedded applications that require access to 
higher order features (network features, SNMP, web server, etc)
– Systems with multiple processes & interprocess communication 

or networking
– Systems with mixture of real-time and non real-time requirements

• With modifications to the kernel Linux can be used for hard-real time 
systems



21-April-2006 - 16

The Licence Issue
• Discussion of Linux is incomplete without considering licence issues
• Legal ambiguity surrounding the GPL potentially impedes choice of 

Linux for some embedded developments
• Embedded system design is especially susceptible to GPL concerns
• The GPL as clarified by Linus Torvalds. The Linux kernel is licensed 

under the GPL, but with this clarification:
– “This copyright does *not* cover user programs that use kernel 

services by normal system calls -- this is merely considered 
normal use of the kernel, and does *not* fall under the heading of 
'derived work.' ”

• This statement clarifies that user-space programs are not considered 
to be derived from Linux
– It is also interpreted as allowing proprietary kernel modules



21-April-2006 - 17

Practical Example
• We have built an embedded telecoms system with Ethernet, TFTP 

download, SNMP management interfaces and 3 layers of processor 
hierarchy
– Based on a standard 2.4.24 kernel with RTAI patches added
– Process switching measured at 15 microsecond (100 worst case) 

on Freescale MPC852 processor
• With static libraries, the load size still less than 4 MB as follows:

– Kernel 0.5 MB
– Selected GCC libraries ~1 MB
– SNMPD 1.2 MB
– TRAPD 1 MB



21-April-2006 - 18

Conclusion
• Embedded Linux development is evolving rapidly

– A designer has the option to choose from a variety of options for 
everything from the bootloader and distribution to the filesystem 
and GUI

– Given this remarkable freedom of choice and a very active Linux 
community, embedded development on Linux has reached new 
levels of acceptance and usage

– Many new handheld and embedded devices are being delivered 
as open boxes

• Hopefully this introductory overview of the embedded Linux space
has whet your appetite and answered some of your questions
– To aid you further in your projects, The Business Accelerators are 

able to help with more in-depth information on embedded Linux or 
help with your design efforts




